
Automatic Extraction of I/O
Data for Scripted

Benchmarks

John May

Lawrence Livermore National
Laboratory

Standard I/O Benchmarks

• Application-based benchmarks

–  Use I/O system in realistic ways

–  May be hard to build, run, or distribute

• Synthetic benchmarks

–  Use standard or custom I/O patterns

–  May not present a realistic workload

Script-Based Benchmarks

• Record I/O events in application

• Replay events and timing

– Based on //TRACE by Mesnier et al. [1]

– Our current focus is sequential I/O

Application

Capture library

open

compute

read

compute

…

Replay script Replay tool

Script-based benchmark

Scripted Benchmark Challenges

•  Instrument events at

the right level

• Gather accurate

timing data

• Accurate replay

– not covered here

fprintf(…);
/* work */
fprintf(…);
/* more work */
fprintf(…);
…

write(…);
open

compute

write

…

Many I/O
events in
application…

…produce
one system-
level event

Instrumentation options

Library Interposition

•  Intercept standard I/

O library functions

•  Insert instrumented

versions

•  Wrong level: can’t

capture low-level
calls from high-level
functions

fprintf(…);
/* work */
fprintf(…);
/* more work */
fprintf(…);
…

my_fprintf(…);

fprintf(…);

write(…);

fopen

compute

fprintf

…

Events
captured

here

…not here

Linux Strace Utility

•  Events captured here Events captured here Events captured here

• Tracks system calls using debugger interface

• Easy to use; output easy parse

• Adds too much overhead to “compute” times

$ strace -r -T -s 0 -e trace=file,desc ls

 0.000000 execve("/bin/ls", [, ...], [/* 29 vars */]) = 0 <0.000237>

 0.000297 open("/etc/ld.so.cache", O_RDONLY) = 3 <0.000047>

 0.000257 fstat64(3, {st_mode=S_IFREG|0644, st_size=64677, ...}) = 0 <0.000033>

 0.000394 close(3) = 0 <0.000015>

 0.000230 open("/lib/librt.so.1", O_RDONLY) = 3 <0.000046>

 0.000289 read(3, ""..., 512) = 512 <0.000028>

 ...

Inter-event times
exaggerated

Dynamic Binary Instrumentation

• System call instructions replaced with calls to
user instrumentation

• Low overhead, accurate timing

•  Instrumentation limited to 32-bit Linux

• Based on Jockey library [2]

mov 4 (%esp), %ebx

int $0x80
ret

mov $0x4, %eax
save current state mov 4 (%esp), %ebx

nop
ret

jmp to trampoline call my_write function
restore state
jmp to original code

Instrumented Uninstrumented

Replay Profile vs. Application

Cumulative I/O Time: Application vs. Replay

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

Execution Time

I
/

O
 T

im
e Application Read

Application Write

Replay Read

Replay Write

Acknowledgements"
and Citations

Thanks to Maya Gokhale, Roger Pearce, John Gyllenhaal, Mark Grondona, and Ben Woodard for help,
discussions, and support.

[1]
Mesnier, M., Wachs, M., Sambasivan, R. R. , Lopez, J., Hendricks, J., and Ganger, G. R., “//TRACE: Parallel
trace replay with approximate causal events.” In Proceedings of the 5th USENIX Conference on File and
Storage Technologies (FAST ’07) (February 2007).

[2]
Saito, Y., “Jockey: A user-space library for record-replay debugging.” In AADEBUG ’05: Proceedings of the
Sixth International Symposium on Automated Analysis-Driven Debugging (2005), pp.69–76.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract DE-AC52-07NA27344.

